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We describe a three-dimensional algorithm for the advancement of the resistive
MHD equations in cylindrical geometry with line-tied boundary conditions. This
code has been developed to simulate the behavior of solar coronal plasmas. A finite-
difference discretization is used for the radial and axial coordinates; a pseudospectral
method is used for the azimuthal coordinate. The dependent variables are defined
on finite-difference meshes that are staggered with respect to each other to facili-
tate the application of boundary conditions. The time-advance algorithm features a
semi-implicit leapfrog scheme for the wave terms, a predictor—corrector treatment
of advection, and an implicit advance of the resistive and viscous diffusion terms.
The semi-implicit and implicit operators are inverted using a preconditioned con-
jugate gradient method. Special care is taken in maintaining the self-adjointness of
the discretized operators, so that a fast inversion algorithm applicable to symmet-
ric matrices can be used. By way of illustration, we describe the application of the
code to the linear and nonlinear evolution of a kink instability in a twisted flux
tube. (© 1998 Academic Press

Key Wordspartial differential equations; initial value and time-dependent initial-
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1. INTRODUCTION

The solar corona abounds with interesting phenomena of controversial physical interp
tation. Although itis not understood why the corona is so hot (aroufi 1nd what causes
flares to occur, it is believed that magnetic reconnection plays a crucial role in determini
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its structure and evolution. Loops of tenuous magnetized plasma are observed frequer
the corona. The ends of these coronal loops are anchored in the dense photosphere
a situation that has been referred toliag tying The slow motions in the photosphere
drive the footpoints of the loops, which evolve through series of equilibria. Rapid evolut
may occur when an unstable equilibrium is reached, possibly leading to the develop!
of current sheets, magnetic reconnection, and the release of magnetic energy that ma
the corona. If such “disruptions” are sufficiently impulsive, they may be identified wi
solar flares. Recent observational and theoretical results on flares and coronal heatir
be found in [1-4].

A complete description of these processes requires a three-dimensional model th
cludes the slow, long-wavelength evolution prior to disruption, as well as the rapid sh
wavelength evolution in the nonlinear phase. The resistive magnetohydrodynamic (M
model is appropriate to describe much of the physics associated with these phenomen
cept in places where the gradient scale-length is smaller than the gyroradius and a ki
treatment must be adopted). For simplicity we will restrict our attention to geometries
are best described in a cylindrical coordinate system. When modeling coronal loops
will therefore neglect the important effect of loop curvature [5], studying instead strai
flux tubes as an approximation to large-aspect-ratio coronal loops.

Although the linear stability properties of cylindrical flux tubes have been studied a
Iytically [6—9], a description of the nonlinear evolution requires a computational approe
Several cylindrical MHD codes, with axially periodic boundary conditions, have been u
to model laboratory plasmas [10-14]. However, we cannot use such codes for our st
because we need to impose line-tied boundary conditions to properly model coronal Ic
and a new algorithm must be developed for this purpose.

The goal of the present paper is to describe a fast, accurate, and reliable algorithm fc
advancement of the full resistive and viscous MHD equations in cylindrical geometry wt
allows for the specification of driving photospheric motions at the magnetic footpoints.
code is an improved version of the algorithm employed in [15]. Quantities are evaluate
grids: the azimuthal variatior] is represented using Fourier series, with pseudospect
calculation of derivatives; the and z coordinates are discretized on staggered mesh
which allows us to define a curl operator whose divergence vanishes identically. A lear
scheme is used for the time advancement of the wave terms. We employ a semi-im,
operator in the momentum equation, following the method described in [13], while treat
advection with a predictor—corrector scheme. The semi-implicit scheme allows us to se
time step through considerations of accuracy rather than stability of the algorithm and |
to a substantial saving of CPU time, compared to a fully explicit algorithm.

The resistive and viscous diffusion terms are advanced implicitly. The resulting impl
equations and the semi-implicit operator are inverted using a preconditioned conju
gradient method [16,17]. We have attempted to preserve many of the analytical prope
of the MHD equations in the discretized equations. In particular, we have taken special
to preserve the self-adjointness of spatial difference operators. Since the proper differel
of a self-adjoint operator results in a symmetric matrix, we are therefore able to use
efficient methods that exist for inverting symmetric matrices. As an illustration of t
properties of our algorithm, we describe its application to the linear and nonlinear evolu
of a kink instability in a twisted flux tube.

The paper is organized as follows: in Section 2 we describe the MHD equations anc
spatial and temporal approximations employed to advance them in time; Section 3 con
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a description of the implementation of a conjugate gradient algorithm for the inversion:
the implicit spatial operators; in Section 4 we describe an application of the code, and
Section 5 we summarize our conclusions.

2. COMPUTATIONAL MODEL

Coronal loops consist of a hot, tenuous plasma embedded in a strong magnetic fie
A most important feature of the loops is that their ends are firmly anchored in the den
photosphere. A sketch of a coronal loop is shown in Fig. 1.

The resistive MHD model is appropriate for our study of solar coronal plasmas. TF
MHD equations are written in cylindrical coordinates, neglecting for simplicity the curva
ture effect. Hence, loops in our analysis are “straightened out” as in Fig. 2. This is clea
an approximation and important effects are neglected in principle. This description is €
pected to be appropriate when the aspect ratio (i.e., the ratio between the radial and
axial length scales) is large. We write the MHD equations in a convenient nondimensior
form as

A

aa—t:VxB—anVxA, 1)
ap

P _ . 2
at V- (pv), (2)
ap

ﬁ:—V~(pV)—(y—1)pV~v, (3)
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ot P P 00

whereA is the vector potential of the magnetic fi@dd= V x A, J = V x B is the current
density,v is the velocity, p the pressurep the mass density; the resistivity, and the
viscosity.

photosphere

FIG. 1. A schematic representation of the magnetic field of a loop in the solar corona. Note that all the fie
lines are anchored in the photosphere at both ends. In our code we neglect the curvature and the loop apj
“straightened out” (see Fig. 2).
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photosphere
z=L/2
z=0
z=-L/2

photosphere

FIG. 2. Coordinates and boundaries for modeling coronal loops. Field lines are anchored in the photos;
atz = +L /2. The loops in the code are “straightened out,” since we ignore the curvature observed in real |
(see Fig. 1).

The induction equation (1) allows us to select between idgat Q) or resistive MHD
(n # 0). An ideal run is possible only in particular conditions, for example, to study t
linear phase of an instability. In general, the grid resolution dictates the minimum val
of n andv that may be used. For example, for a %82 x 64 grid, we have found on a
particular problem that they must be at leadi0—2, and sometimes 102, for the solution
to be physically valid.

When we discuss the zero-beta model, in which we assumetkad, we specify the
density to be uniform and fixed in time, so that the mass continuity equation (2) is
solved. Similarly, we do not advance the energy equation (3) in the zero-beta model. |
that we neglect the influence of viscous and resistive heating, since we use an adic
energy equation. We plan to add the viscous and resistive heating terms, as well as th
conduction, in future versions of the code.

The viscosity in the momentum equation (4) is mainly used to damp short-waveler
modes in the calculation. In this term we have ugge: 1/(2r) [pd6, instead ofp, to
allow the matrix inversion to proceed mode by mode.

The equations describe the long-wavelength and long time-scale evolution of the col
including magneto—acoustic waves, ideal and resistive instabilities, and resistive and vis
damping. However, particle acceleration and X-ray emission require kinetic models
are not part of the code.

Inacoronal loop, the dense photosphere anchors the footpoints of the magnetic field |
so that they are dragged by applied surface flow$his footpoint shearing is modeled by
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applying the condition at the boundaries- +L /2,

0A
3—t‘ = (V x B), (5)

v=V, (6)

where the subscritindicates the tangential component of vectors (the normal componel
of A is advanced as in Eqg. (1)). Hence boundary conditions are specified only on t
tangential electric field and normal magnetic field. Equations (5)—(6) are also valid at tl
radial boundary at = R, where a conducting wall is present avid= 0. The wall is placed

far enough from the plasma not to affect the physics being studied.

In order to translate from nondimensional to physical quantities we have to specify thr
normalization variables for length, magnetic field, and density. For example, when modeli
coronal loops, we can skt = 10° cm, B, =10 G, andp, = 1071° g cn13. Then fields and
scalars in Egs. (1)—(4) can be measured in terms of

A, = B.L, Gcm

V, = B,(4mp,)7Y/? cmst,

J, =cB,(4rL,)? statamp cm?,
P, = B%(4m) ! dyne cnr?,

t, = LOB;1(47'[/0@)1/2 S,

ne = (4m)Y2c2p 2B, L, s,

Vo = BOLO(4JT,00)’1/2 cnmé s 1,

In terms of this normalization, we have: the Adivvelocityvp =V, ~9 x 10° cm s71, the
Alfven timeta = L,/va ~ 1, the mass scad = p,L3=1x 1(° g, etc.

2.1. Spatial Approximation

We use cylindrical coordinatés, 6, z), withO<r < R,0<6 <2x,—-L/2<z<L/2,
to model large aspect-ratio coronal loops. A sketch of the coordinate system is presente
Fig. 2. Thed coordinate is periodic, so we introduce a discrete ntgsh 27 (j — 1)/M,

i =1,2,..., M, and write any fieldf as a finite Fourier series,
M/2+1 _
fr.0.2= >  fur2e™. @)
m=-M/2+1

It is well known that the discrete Fourier series converges rapidly if the solution is smoo
[18]. Furthermore, time advancement in Fourier space is facilitated because the poloi
(m) modes for linear operators decouple. Hence, implicit terms, which are present in t
induction and momentum equations and must be inverted, will be represented as disti
small submatrices (one for each Fourier mode), instead of a single large matrix.

The complex coefficient$,, are given by

14 .
fn,2)= > 1,6, 2e7™. ®)
i—1
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Thereality off requires thaf, = f*,, wheref/ is the complex conjugate df,. Moreover,

fo and fy 241 have zero imaginary parts. We apply (8) to the MHD equations (1)—(4),
taining a set oM nonlinear partial differential equations in the variablez(t) describing
the evolution of the Fourier components/fv, p, andp.

We evaluate the nonlinear terms in Egs. (1)—(4) with a fully dealiased pseudospe
algorithm, as described in [20]. The pseudospectral method consists of computing opere
either in Fourier space or in real space, according to where it is more convenient. -
multiplication is performed in real space to avoid convolution, and derivativésdre
evaluated in Fourier space. We use a fast Fourier transform to transform between the
representations. However, multiplication generates aliasing errors, due to quadratic
higher nonlinearities. Hence, we truncate #hepectrum (dealiasing) and retain only two-:
thirds of available Fourier space.

In order to simplify an implicit treatment, we assume thatndv do not depend of.
This choice makes the implicit viscous and resistive operators linéaaimd, consequently,
poloidal modes decouple in Fourier space.

We choose two staggered meshes for each nonperiodic directiomz. Beside being
second-order accurate in calculating derivatives (when uniform meshes are specified), i
method boundary conditions are specified naturally: for the magnetic field only the nor
component is specified, while the tangential one is computed, and for the electric fielc
tangential component is specified, while the normal component is computed. Moreovel
algorithm has the property that the longitudinal and transverse parts of vectors are effect
decoupled, so that initially vanishing longitudinal and transverse components will var
all the time. A consequence of this is ti\t- B = 0.

Current sheets may form during the nonlinear phase of instabilities in our simulatic
We therefore allow the mesh points in the radial direction to have nonuniform spacin
order to have locally enhanced resolution in the proximity of the center of the loop. -
axial mesh is normally (but not necessarily) uniformly spaced. Radial mesh points on
integer mesh are indicated with,i = 1, | — 1), wherer; = 0 andr, _; = R. On the half-
integer mesh we writér,.i, i = 1, |). The relationship between the two set of mesh poin
iSrh.i = (ri +ri_1)/2. We define also the finite incremerith,.; =ri —ri_1,i=2,1 — 1)
and(drj =rnit1—rni, i =1, | —1). Inthe axial direction we defing;, j =1, J—1), with
7y =—L/2 andz;_; = L /2, with analogous definitions fax, ;, dz;, anddz, ;. Figures 3,
4,5, and 6 show how the dependent variables are defined on each mesh.

Derivatives are defined on integer or half-integer meshes according to Table 1. \
these definitions the gradient, divergence, and curl operator can be implemented so th

TABLE 1
Differential Operators and Their Corresponding
Finite Difference Representations

Operator Integer mesh Half-integer mesh
1o ilc, iMp,,
r oo ri Ihii
9 E,j—Ei, Fj — R
ar dry; dr;
il Gij—Gij Hiji1 — Hij

0z dz,; dz
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FIG. 3. Mesh forv,, A, B,, andJ;. The square represents the physical domamandz. Mesh points are
indicated witho.

1 2 I
X X X X X J
z=1LJ2
X X X X X
Tz X X X X X
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r=20 _7'_’. r=R

FIG. 4. Mesh forvy, As, Jy, 0, andp. The square represents the physical domamandz. Mesh points are
indicated withx.
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FIG.5. Mesh forv,, A, B;, andJ,. The square represents the physical domamnandz. Mesh points are
indicated witho.
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FIG.6. MeshforBy, v, andy. The square represents the physical domaireindz. Mesh points are indicated
with e.
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divergence of a curl and the curl of a gradient vanish identically. The compondb@raf

J are naturally specified on integer or half-integer meshes according to their definition. T
components of the nonlinear terms in Egs. (1)—(4) are evaluated on the same grid of
field components on the left-hand side, using simple averaging where necessary.

Physical boundary conditions f@randv are specified a = +L /2 andr = Raccording
to Egs. (5)—(6).

Boundary values fop andp are not required to be specified in our formulation, but they
can be evaluated for diagnostic purposes using extrapolation=At we apply geomet-
ric boundary conditions as shown in Appendix A. It is not completely straightforward t
implement such boundary conditions, as they tend to spoil the symmetry properties of 1
operators we have to invert. See Section 3 for further discussion.

2.2. Temporal Approximation

The right-hand sides of Eqgs. (1)—(4) have advective, dissipative, and wave-like terms tl
are treated using predictor—corrector, implicit, and semi-implicit methods. We introduce
leapfrog time discretization for the various fields, definkgtogether withp and p) and
V at staggered time intervals. The resulting algorithm is

A* — An—1/2

" = V" x B2, P (9)
AN+1Y/2 _ pn-1/2
V x V x Ant1/2
_ ”f
V x V x Ah-1/2
S e— (10)
p* — pn71/2 -
At = -V (p"VAM), P (11)
pn+l/2 _ pnfl/z .
At ==V (p"V"), C (12)
p* _ pnfl/Z B
= —V - (p"VAM), P (13)
pn+1/2 _ pn71/2 .
A Ve c
—(y = Dp"AV V", (14)
® __ N
v Atv =—Vv". VWV, P (15)
ko n
VAtV = —V". VYV C

JHU2  BMHY2 gy pnl/2

N t1/2 N2

v C2At2pf 2w (v — vy

Atp8+1/2 ’

(16)
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YL va8+l/zvvn+l

At p(r)H-l/Z

17)

We have marked with P's and C'’s respectively the predictor and corrector steps in
equations forA, p, p, andv. Quantities marked with & or a xx index are provisional
values needed in the predictor—corrector schemes and for a fully implicit treatment of
viscous term in Eq. (17).

The constan€? is the semi-implicit coefficient. The semi-implicit method is described |
[13]. This method is unconditionally stable with respect to all magneto—acoustic and s
Alfv'en modes. Hence, accuracy becomes the most relevant consideration in the cho
the time step. Briefly, the method consists of adding to the original momentum equatiol
a linear term multiplied by a coefficient proportional to the time step,

iV . CZAthOVa—V. (18)

Po ot

This removes the small time-step restriction originally introduced by the wave term. Inv
ing the linear operator above is much less complex and requires less computer memon
using a fully implicit scheme. The advective terms in (1)—(4) are formally only first-orc
accurate ilAt, while the wave-like terms are second-order accurate (centered). The us
the semi-implicit method for the wave terms leaves only the stability condition

|(KV)maxAt] < 1, (29)

due to the explicit treatment of advection. The quarkifg the magnitude of the largest
wave vector compatible with the grid size at the p@int z;, 6k),

)@@ e

Note the presence of the factor “3” in the expressiorkfedue to the dealiasing algorithm
which restricts the largest poloidal modeNty 3.

In order to address the stability limits imposed by the advective terms in Egs. (1)-
and to give a heuristic justification of Egs. (19), (20), we present a one-dimensional
Neumann stability analysis of the advection part of the algorithm in Appendix B.

A stability analysis of our algorithm indicates that the wave-like terms are stable for
choice of time step, and the advective terms are stable when Eq. (19) is satisfied. t
ever, we have recently found that the coupling of the leapfrog advance of the wave:
terms with a predictor—corrector for the advective terms may introduce numerical in
bility. This instability does not develop when there is sufficient viscosity in the algorith
The calculations we describe in Section 4 have sufficient viscosity to prevent this nur
ical instability from occurring. We have analyzed this coupling, and we have devisec
algorithm that does not suffer from this instability [19]. The fully implicit differencing o
diffusive terms in Egs. (1) and (4) does not introduce any stability limitation in the tir
step.
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3. SELF-ADJOINT REPRESENTATION OF THE DIFFUSIVE
AND SEMI-IMPLICIT TERMS

The differential operators in the MHD equations have the property of being self-adjoin
Let us concentrate only on the diffusive terms that appear in Eq. (1) (resistive diffusic
operator) and in Eqg. (4) (semi-implicit and viscous). When these equations are advance
time implicitly the problem requires solving the algebraic equation

Ax = b, (21)

whereA is the coefficient matrixx is the unknown vector, ardlis the known term. In our
case the dimension of the matrxis 31 J x 31 J at worst, when the equations for the three
vector components are coupled.

We shall show that it is possible to write for all the above-cited operators a nfathiat
is self-adjoint and positive-definite. This preserves an important property of the analytic
equation and has also a desirable numerical advantage; we can apply the conjugate gra
(CG) algorithm to rapidly compute the solutigninstead of more complicated and general
methods. The theory of the CG method is given in [16], and an application to a proble
similar to ours is in [17]. Briefly, the CG method is an iterative algorithm to find the
solution vector of the linear system (21) through successive approximations. It involv
the matrix A only in the context of matrix—vector multiplication. Differently from other
iterative methods, estimates of the largest and smallest eigenvalues of the iteration ma
are not needed. However rapid convergence occurs when the ratio between the maxin
and minimum eigenvalues @& (known as the condition number) is small. Since our matrix
is diagonally dominant, we apply diagonal preconditioning and obtain a matrix with
smaller condition number. The techniques described in this section make the code abou
times faster than its previous version in [15], which uses the biconjugate gradient meth
[17].

3.1. One-Dimensional Model

We present now a discussion about how to implement a self-adjoint representation c
diffusive operator in one dimension. We consider the following diffusion equation:

ad 9 [ 0B
at 8x<’3 8x> P (22)

X is assumed to vary between 0 ahdWe want to solve the equation above numerically.
First we fix two staggered meshes as in Figp7s defined on the half-integer mesh (marked
with x’s), while 8 lies on the integer mesh (marked witls). The grid points need not be
uniform. A general finite difference method for solving Eq. (22) is

(PI’H-l _ @I’]

A = @Ds " 4 (1— w)Dg - " (23)

Operators and vectors are in bold when we refer to them as a whole; when we consi
their components we write them in normal type. The value o&n be any number between
0 (fully explicit) and 1 (fully implicit). a):% corresponds to a (centered) second-order
accurate inAt time discretization. We rewrite the previous equation in components as
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Bi
z=0 —dz;— =1L
1 2 N-1
X o ¢ o > o % ) X
1 2 N
"‘—dxh;i_"

®;

FIG. 7. Mesh used to represent Eq. (22). The physical region is between 0.ahdies on the mesh whose
points are marked witk ; 8 lies on the one indicated witkis. dx anddx,; are the distances between neighbor
points for each mesh.

@U*}—%"*l q,n+17¢n+j.
. I+ I J— . | I—
M _ pAt Pier— — P
l dXh;i
. q’in+1’¢in —_ AR ‘I’in’q’infl
" -1 "
=@ + (1- w)At s dxff A, (24)
s

where the distance between two mesh points on the half-integer and on integer mes
indicated withdx anddx,.;, respectively. If we write Eq. (24) in matrix form as it stands
we find that the matrixA is not symmetric. Hence, we cannot apply the CG algorithi
(actually the matrix is tridiagonal, and we might use a fsthocdirect solver for such
cases. However it loses this property when we increase the number of dimensions).
We know that for functions that are zero at the boundaries the following equality hol

L L
/XDﬁde=/ Dy Xdx (25)
0 0

We can write the numerical representation of Eq. (25) as a product between matrice:
vectors,

X -dxDs - ® = ® - dxDy - X. (26)

Heredx is a diagonal matrix whose elements dsg.; . With the discretization given by (24),
we find thatdxD; is a self-adjoint matrix. Wheg is positive, the matrix is also positive
definite.

Therefore, if we multiply both sides of Eq. (24) biy..;, we obtain

M- ®); = Mo,i @ + M1+ M_i®i_1=§; (27)
Moi = dXn.i + wAt (—ﬂl fi-a );
dx  dx_1
ﬁ.
My = —a)Atd—)'(i;

M_j=Myi1
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Note that in this form the matrii is explicitly symmetric. Here we have dropped the
temporal index and have indicated the known term just iithn computing(M - ¥);
(whereW; is either the guess solution or a temporary vector used by the CG algorithm), tl
indexi may vary only in the range 2 i < N — 1. When we know how to fix the proper
boundary conditions, without spoiling the self-adjoint nature of the operator, we shall |
able to apply the CG algorithm.

Boundary conditions are generalirichlet conditions(values specified at boundary
points) oNeumann condition@ormal gradients at the boundaries). But even a combinatiol
of both is possible if we write them as

Wy +CoPo=YVy forx =0,

(28)
Un+C PNy =)V forx=1L.

Wherely, . and(Cp,. are constants whose values determine whether Dirictlet) or
Neumann ¢ = —1) conditions apply. A proof that the matr® is positive definite, with
constrains as in Eq. (28), is given in Appendix C.

The way we implement the boundary conditions in our algorithm depends on how we i
tend to calculate the matrix—vector product at each iteration. We shall examine two metho
the first one modifies the matrix itself, the second one modifies the végtor

To implement the first scheme we store the main diagdral and one offset diagonal
M_.i of the matrix. The diagonal values and the right-hand Sdenust be modified
according to Eq. (28) whein=2 and when =N — 1 as

Moz = Moz — CoM.1,
$=%-VoMiu
Mon-1 = Mon-1— CLM N,
Svoi=Sv1— VM. (29)

For3<i <N-2,§ = S,and/\;lo;i = Mao,i. Nowonly values of; with2 <i < N—1
enter into the calculation dfl - ¥ andM is a symmetric positive definite matrix. After the
CG algorithm iterations, when we have found the soluffgrior the internal points, we set
®; and®y according to Eqg. (28).

However, the previous method might not work when we deal with 2D or 3D problems ar
more complicated operators such as “curl—curl.” Thenitis possible that boundary conditio
couple two different components of a vector field. In those cases, when we cannot write
modified diagonals for the self-adjoint matrix as in (29), we rely on the following methot
that has the advantage that we do not need to explicitly write the diagonals.

We have implemented a subroutine to set the boundary points of the ¥eetorording
to Eqg. (28). Another subroutine calculatdg - ¥);, receiving anN component vector in
input and yielding arN — 2 component vector in output. We split the calculation of the
solution of Eq. (27) into two parts. First, we calculate the “inhomogeneous part,” fixini
the boundary condition for the right-hand side. We take fibiteerms and usa@® as a
work-array. The steps we perform are:

1. Setw® =0,
2. Setthe boundary points dn®. Since internal points are all zero we obt&'vff) =W
and®® = V..
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3. Get (M-¥®),, i=2 N—1. The only nonzero components afel - &®), =
My 1VoandM - ®®)y 3 = M VL. 3

4. Find boundary contributions to the right-hand side of (7% S — (M - #®); i =
2,N—-1.

During the main iteration loop we calculate the “homogeneous part” of the solution, set
Y = 0. At each iteration of the CG solver the matrix—vector proditt. ¥); is evaluated
in two steps:

1. Setthe boundary points ab. Since) = 0, ¥; = —CoW,, and¥y = —C ¥y _;.
2. Get(M - W);,i =2, N-1.

After the CG algorithm iterations, when the soluti®n is retrieved, its values far = 1
andi = N are easily deduced from Eg. (28).

3.2. Viscosity Equation in Cylindrical Coordinates

In order to solve Eq. (4) the viscosity and semi-implicit operators must be inverted. If
write the finite difference equivalents of Egs. (16)—(17) as we have the numerical counte
for the one-dimensional model in Eq. (24), we obtain matrices that are no longer self-ad
as the analytical operators and require a slow algorithm for their inversion. Howeve
is possible to implement a general numerical scheme for inverting both operators.
shall represent them as symmetric and positive-definite matrices, using Subsection 3.
guideline. We write

(pdV — Atw1 dVV - a V)V = [pdV + Atw, dVV - a VIV, (30)

For the viscosity operatar is vp (we write p instead ofpg to avoid subscript overloading).
Since we use a fully implicit advancement to ensure an efficient damping of the sr
unresolved scales, we take = 1 andw, = 0. For the semi-implicit algorithm = C2Atpg
andw; = 1,w, = —1. Note that it is necessary to multiply both sides of the equation byt
element of volumalV in order to obtain a self-adjoint matrix. This enables us to use tl
CG algorithm. The differential operatdiVV - «'V must be represented in a discrete forn
without spoiling the symmetry of the matrix. Thus, we first write this operator in cylindric
coordinates in the following form: for thecomponent it is

0 «a da v, M im/( 9 [av 190
. - - - - - — = ==) - =_1r
Vel = o0y ar( T T ( ( ) r ¢ av9)>

For thed component it is

10 Oduvy v Iim 0 [oav 190
V-aVVvlg=-—ra— —(1+m )——— — | — —r——(ravr)

ror ar 2 or r

im d [ o 0 d 0dvy
SRSLLLY A ) B B R A 32
2<a8r<r> 2o )>+az“az (32)
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And, finally, for thez component we obtain

10 0 o 0
V. -aVy|, = ——raﬁ — mzozE + —ai.
ror  or r2 9z 9z

(33)

We choose as a natural grid farthe same as that used fpg. This grid is shown in
Fig. 4. When interpolated values are needed on other grids we put a " or a over
symbol to indicate respectively interpolation alangr z. We can now write the numerical
representation of Eq. (30). We shall drop the temporal index for brevity. The right-har
side is indicated with just a§, but its formula is analogous to the left-hand side, the only
differences being the use of the old valuesvadnd the factor—w,, instead ofw;. The
equation for they, component is

. r2dzn. josq r2dz,. o i
I’idl'ith;jpi,j + wlAtM + wlAtw + a)lAtaiJ’»l’deh;j
Mhi+10Thi 1 Mhii drh;i
qi jdridz,j ridria; | ridria -
—wlAtOli,deh;j +w1Atm2u + wlAt;a"] +w1Atw Vrii |
I de de,1

ligalidznjoige
Mhi+1drh:i41

Fi—alidzn o |

— w1 At
M. drhi

Urjigl,j — w1At Uri—1,

ridri&i,j
de

o This
— o At— (al-‘rlj +a| J)( S o )Uo;i+1,j

ridriai j—1
—a)lAt Ur;i,j+1—a)1At7vr;i’j_l
de,l

Mhii+1 fi

+iwlAt— (alj+alj)<__rh_l>v9lj—S'Ij (34)

h;i rI
The one for thess component is

ridzn;a; j

Al A2 |
h;i 0Zh;jai T wAt
Ih;i fi

<rh;idrh;idzh;jpi,j + w1 At(1+m?)

F_1dzn.iQi_1 i M.idrai; i M.idrpio j—
+wlAtw + wlAtM +w1AtM Voii.j
dl’i,1 dZJ' de,;L
ridz & | ri—10z i@ j Mhi Al ot |
— g At — o At T g At
1 dri 0;i+1,] 1 drifl 0;i—1,]j 1 de 6;i,j+1
Mhidrhio -1 li—1  Th
— W At—=———", j_1| Fiwi At~ (Oh i+ Qi) — —— | Uri-1,j
dzj_, Mhi  Tic1
l'hl
—iwi At (alj+alj) __I‘_ UI’I]—$IJ (35)
h;i I

Note that whemm > 0 the equations for, andv, are coupled. For the, component we
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obtain
_ drp.idzja; rdza;
(pi,,-rh;idrh;idz,- —i—a)lAtsz wlAIM
Ih:i dri
r_1dzjai_1; Mhidrhic | Mhei Arhi i |
+a)1At i—1UZ4j&j—1 j a)j_At h;i Ulh;i I’H—l—i-a)lAt h;iUlh;i i j Vzi. |
dri_a dzn 41 dz, |
ride&_ij ri—ldzjgi—l.j
— W At——— V41 — I At——— v,
1 dri Zi+1,]j 1 dl’i,1 zi—1,j
Mhidrhic Mhidrpio
—wlAtwvzﬂ,Hl — w1 At hid = hi ]Uz;i,jfl = SZIJ (36)

dz, 41

Let us consider the boxed line in Eq. (35); it containg at denominator which diverges
fori = 2. The boxed derivatives in Eq. (32) produce that term. Using the results in
pendix A we can rewrite the representationrioe= 1 of the second diverging derivative in
Eqg. (32) as

0 vur ao 2 Vr2/T2 =Y
— | =——4+a+00)= —"—— 37
arr |, rh;2+ 1+ 0() dry.2 (37)
Ur;2 = do + a~lrh;2 + O(r4)~ (38)
Now Y can be easily found, taking into account that
2rp2 = = drp2. (39)

The first derivative can be treated in the same way. Hence, the boxed line of Eq. (35) v
i =2 andm = 1 becomes

. N 5rp,
+lwi At (Olz_j + Oll’j) (_E:_zz) Uri1j- (40)

Whenm = 2 we can write

| _9u | _ 0| Ve2j Vel (41)
rl, orf, ar |, dry '
The boxed line of Eq. (35) then becomes
R Vg2 i — Vg-1i
—w1At(az +0t1,j)fh;29’2’]dirle’l’]- (42)

For m> 3 the above-cited line equals zero fioe 2. It is quite easy to verify that the
equations for the componentswhave been written in a self-adjoint form. Once we hav
fixed the boundary conditions we can deliver the equations to the CG solver.

The fieldv may assume (in principle) arbitrary valiésatz= + L /2 andr = R, while
for the singular boundary at=0 the values are dictated by conditions in Appendix A
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Thus we write
o 0 ifmz=#1
r;lj = —ive;z,j |fm:1
e = { Vo2 iTmMm=02
#1107 \vpz;  otherwise

N V22, ifm#£1
zL] —Vz2,j fm=1

UrNj = ViR
Vo:N,j = —Vo:N-1j + 2Vo.R |
VzN,j = —UzN-1,j + 2VzRj

Vi1 = —Uri2 + 2V L2
Vgii,1 = —Va;i.2 + 2Vaii,—Ls2

Vzi1 = Vzi L2

VriiM = —Vr;iM—1+ 2Vhii 41,2
Vgii,M = —Vg;i,M—1+ 2V 4L/2
VziM = Vzi L2 (43)

The first method to implement the boundary conditions, as explained in Subsection 3
can be used. In fact, the coupling®wfandv, in our scheme does not spoil the self-adjoint
nature of the operator.

3.3. The Induction Equation in Cylindrical Coordinates
Let us consider how to solve the induction equation
10A

n ot

where the diffusive “curl—curl” operator is self-adjoint. We are not interested now in th
ideal part of Eq. (1), which is treated separately with the predictor—corrector and mere
adds a source term to the right-hand side of

= - VxVxA+S, (44)

1 1
dV( + wAtV x VX)A<”+1> = dV( — (1 - w)AtV x VX)A<”>. (45)
n n

The equation above is the finite-difference and self-adjoint representation of Eq. (44) wh
S = 0. It can be shown that to have stability for alt it must be% < w < 1. In the code
we choosey = % which is also second-order accurate in time. The analytical form of the
curl—curl operator, in cylindrical coordinates and after a Fourier transfomis

m? 2A  .m3d 32A;
A= A~ 5 +ig (A : 46
V x V x Al rzAr 322+r28r( 6,)+8raz (46)
A 919 92A) .maA,
VxVxAp=im—— — ———rAy — i — , 47
x V x Alg ar r arroar ¢ 822+ r 9z (“7)
10 0 .ma 10 0A m?
VXVXA|Z=——r—Ar+|__A6___r_Z (48)

ror 9z r 9z ror ar  r2 %
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Note that the three components/Afare coupled fom > 1. We prefer to hold; constant
for the sake of simplicity. We shall drop the temporal index and write the right-hand s
of Eq. (45) just a5, whose form is easily deduced from the left-hand side. The equat
for the radial component is

n ri ’ dz dz;_,

rdr ridr; dz,.irn:i
— 'A,.,+1 Ata)dz A 1+|Atwmw
]7 |

Adr: . 2 Adr:
(M + Ao drday; + Ato" 2 4 At 19" )A, y

Agiit1]

th;j i

— i Atom Agi i + Ator Agzit1j — Atori Az |
— AtorAgiy1j-1+ Atori Az j1 = S.i . (49)

The equation fof-component is

a
Fhidrhidzy. r2.dz.: r2.dz, ridrn.i
h;i Qi A Zy; 4 Atoo i Zn; | + Ate| i Zn; j + Ate G
n ridri ri_ldri_l ZJ'
Mhii Al Ih;i h|+1d2hJ
At ) A AT i
+ Atw de—l )AG,I,] rdr, Aoyl
b
FhsiMhi—1d Zn; | Ih;i drpi
@ ri—ldri—l Aé),| 1,j w d Aé?l j+1
rh.idr
—Atw%Ag.J 1+ i Atwomdin Az | — i Atomdin Azi 1
i1
C
. M.idz. . Ih.idzn. i
+IAtwmh"r72h'JAr;i,j — i Atom h;izhj Aic1j =S (50)
i i-1

Finally, we write the equation for thecomponent as

rhidrp.id z; drp.idz; r;dz; ri_1dz;
S 4 Atem? =T 4 Ate-—T 4 Atwo—— | Ay
n rh'i dr| dri7]_

ridz; ri_1dz;
— Atw 'AZ.+1J Ato—"""Ayi_1j + Atori A j 1

M1
— Ator; Ar;i,j — Atori_1 A1 41+ Atori—1 Ari—
+i Atomdry, Agijy1— i Atomdryj Asii =S (51)

Note that in Eq. (50) there are diverging terms when 2. We have marked them with
b, andc. Whenm = 0 only the first two are present. They derive from the finite differenc
representation of

19
——TIAy (52)

ror 1
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which, considering tha®, = O(r) for m = 0, equals

ad
adly (53)
ar |,
Therefore, it is easy to verify thatandb become
M2
2——— 54
dr]_ ( )

Whenm > 1 we must reconsider how we treat the derivative from which all the diverging
terms come, that is

d
_7(V A)z . 55
ar (V< Ae| (55)

Thezcomponent of avectorin cylindrical coordinates is a scalar, so its Fourier modes behe
like O(r™) near the origin. Thus we can write the equation above as a finite difference

(V XA)ZZJ

drh 2 (56)

This means tha, b, andc disappear whem > 1.

The equations for the three component®tdiave been written in a self-adjoint form.
Boundary conditions must be provided now through Eq. (5). Let us write the right-hand si
of Eq. (5) ad. We need not specify boundary values fgrwhenr = R and for A, when
z=—-L/20orz=+L/2.Infact, there is neither a radial derivativeAfin Eq. (46) nor an
axial derivative ofA; in Eq. (48). For = 0 we exploit the results found in Appendix A.
So we write

0 ifm#£1
A = {—iAMj if m=1;

Aoyi = { Avai Tm=02
L= As2;  otherwise

Ai: — Az;z,j ifm=#1
zLi = _Az;2,j ifm=1;

Agtsit + Ao = AGn F AL + 3AtleR
A+ AR = AR AL 3At R
A:n+1) + A£n+1> A:n Ar(n o Atlr s
AT+ AGD = AL+ AT+ AL
AT+ AT = A+ Al s+ At
(“ﬁlﬂ) + (Tfa—l = Agm Mt Aéu m1+ 3Atlg:i 412, (57)
where we had to reintroduce the temporal index for clarity.

Due to the complex intercoupling between the equations for each componént of
only the second method to implement boundary conditions, described in Subsection 3.1



MHD OF SOLAR CORONAL PLASMAS 191

applicable. Hence, we have written a subroutine that, given an input v&cigelds the
left-hand side of Eq. (45) for all the internal points, taking into account of the bound
conditions above. This subroutine is called by the CG algorithm at each iteration.

4. THE NONLINEAR KINK

As an illustration of the application of our code to a solar coronal problem, we desc
the evolution of the kink instability in coronal flux tubes. An earlier version of the prese
code has been used to study the linear stability of the ideal line-tied kink mode [15
preliminary study of the nonlinear evolution of the kink mode has also been presented|
The kink instability may be relevant to describing compact loop flares and the heatin
the solar corona.

A particular equilibrium, known as the Gold—Hoyle field [22], has been used frequer
to test new algorithms. The kink stability of the Gold—Hoyle field has been studied com
tationally by Mikic et al.[15], Foote and Craig [23], Craig and Sneyd [24], and Baty ar
Heyvaerts [25], among others. In order to demonstrate our techniques, we present rest
the linear and nonlinear evolution of the kink instability in this configuration. Although o
code was designed to model more realistic equilibria, especially those that are gene
when specified twisting motions are prescribed in the photosphere, we have chose
Gold-Hoyle field as an illustration, since its linear stability is well known [6, 7, 15, 25] a
its nonlinear evolution has also been studied [24, 25].

The force-free Gold—Hoyle magnetic field is defined by

B =0 (58)
B.r

T e =
B,

%= Wz o

wherea defines the length scale aBd = B, atr = 0. The Gold—Hoyle equilibrium is also
known as the uniform-twist field because the twist angle, which is defined by

LB, L
d(r) = ng

61
rB, ’ (61)

is independent of the radius. The number of turns around the axis that a field line comp
while traversing fronz= —L /2toz= L /2is given by® /2x. This configuration is unstable
to an ideal MHDm =1 kink instability when the twist exceeds a critical valde> ®..
The critical twist for the line-tied kink has been determinedbas= 2.497 by Hood and
Priest [6] and by Einaudi and Van Hoven [#l, = 2.517 by Mikic et al.[15], ®. = 2.46x
by Foote and Craig [23], andt. = 2.477 by Baty and Heyvaerts [25].

We choose a 10k 64 r —z mesh with 32 points ir#, corresponding to the modes
—10 < m <10 after dealiasing. The outer radial wall is placedatR =20a. Thez mesh
is chosen to be uniform, and the radial mesh is nonuniform, with the smallest mesh:
near the axis, wherar =0.03a, increasing toAr = 1.4a near the radial wall. We use a
uniform initial densityp = p,, and a uniform initial pressurp = p,, with p, selected to
give a beta on axis of 1%, whefle = 87 p,/B2. (Note that a force-free equilibrium that is



192 LIONELLO, MIKI €, AND SCHNACK

immersed in a uniform-pressure plasma still remains an equilibrium.) Since the magne
field strength in the Gold—Hoyle equilibrium falls with the radial distance from the axis, th
plasma beta increases with the radius, reacfiegl atr ~ 10a. We have chosen a finite
beta to make the nonlinear evolution correspond more closely to the solar corona, wh
the plasmas is small, but finite.

Since we expect the twist in the solar corona to be introduced by slow magnetic fie
footpoint motions in the photosphere, the appropriate initial state ought to be one in whi
the twist is only slightly larger than the critical value for linear instability. There is no
more footpoint shearing at=+L /2 and the applied surface flow considereW is: 0 (see
Eq. (6)), because the time-scale evolution of the configuration (due to the kink) is small
than the one for the photospheric flow. We selected a twidt f3x in order to produce
a distinguishable linear phase of the instability, while at the same time keeping the exc:
twist (i.e., that above the stability threshold) small. In other simulations we have found th
the nature of the nonlinear state does not seem to be sensitively dependent on the ex
twist, as long as it is not too large [26]. The loop length is set by the conditien®a,
giving a loop with aspect ratib /a =9.42 in this case. The (radial) Alér time is defined
by ta = a/v, where the AIf€n speed on the axis is given by = B, //4mp,. A uniform
viscosity is used, corresponding to a viscous dissipation time a?/v = 100ra.

We study the ideal MHD evolution of this equilibrium (with= 0) in order to investigate
whether the nonlinear evolution of the kink instability leads to the formation of curren
sheets. When strong gradients develop in the magnetic field during ideal MHD nume
ical simulations, it may be necessary to introduce plasma resistivity. In the case of t
Gold-Hoyle field, as discussed below and as noted by Baty and Heyvaerts [25], the n
linear evolution of the kink instability does not introduce current sheets, so that it is n
necessary to introduce resistivity into the calculation. This is in contrast to other equilibr
that we have studied, of which the zero net-current equilibrium is a particular exampl
for which we have found that the nonlinear evolution of the kink leads to the formatio
of current sheets [26], requiring the introduction of finite resistivity during the later stage
of the calculation. We were thus able to perform the present calculation with the ide
MHD model. (We note that a small amount of numerical resistivity is introduced during th
calculation by the upwind treatment of the advection, as described in Appendix B.)

We start the calculation at=0 with the m=0 equilibrium field given by
Egs. (58)-(60), to which we add a small=1 perturbation with an amplitude~ 3 x
104 v3. (The perturbation was chosen to be the eigenfunction corresponding to the m
unstable linear mode in a periodic cylinder, modified suitably to have zero displacement
the axial boundaries, as required by line tying. Any small initial perturbation could hav
been used without affecting the nonlinear results.) The equations were integrateddfgr 50C
requiring about three CPU hours on the Cray YMP/C-90 at NERSC. This code has al
been implemented on the Cray T3D at CINECA in Bologna.

The initial time step was chosen to b f). The time step remainedd, during the
linear part of the run, decreasing t®8r, during the initial phase of the nonlinear evolution
as aresult of the advective flow limit on the time step (Eqg. 19) and increasing badkto O
after saturation of the kink toward a new equilibrium. The advantage of using the sen
implicit scheme is illustrated by the fact that the wave Courant number (i.e., the ratio of tl
time step to the time step required by an explicit calculation) remains significantly largs
than 1 during this calculation. Initially, the wave Courant number is 16, and it increases
30 by the end of the calculation.
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In Figs. 8 and 9 we plot the magnetic energy and the kinetic energy in various modes
function oftime. Initially, then = 0 mode shows the relaxation of the analytic equilibrium t
the mesh (since itis not a perfect equilibrium of the discretized equationsin Ehe mode
grows exponentially in time, with a growth rajea = 0.022. The highem modes show
growth associated with the coupling to time= 1 mode. Beginning dt~ 200z, when the
m=1 mode reaches a significant amplitude, there is a nonlinear interaction during w
the higherm modes become sizable. This phase corresponds to the observed kinkir
the axis of the flux tube. Eventually, the kink mode appears to saturate, indicating tha
kinked flux tube is settling toward a new equilibrium.

The linear growth rate of then=1 mode at® =3 is lower than previous estimates
because of the effect of finite beta. For the case with zero beta, the growth rate has
estimated previously gsta = 0.034 by Miki¢ et al.[15], y ta = 0.027 by Foote and Craig
[23], andy ta = 0.037 by Baty and Heyvaerts [25]. Apparently, even though the plasi
beta is small on the axis, the growth rate is changed significantly by the plasma
sure. This is because the magnetic field strength falls far from the axis in this equ
rium, so that even a small pressure can affect the kinking motion of the flux tube. Ind
when we repeated the calculation with the zero-beta model (i.e., pvithO and a con-
stant density), we found the linear growth rate of the- 1 mode to beyta =0.038, in
good agreement with previous zero-beta results. (The growth rate determined by F
and Craig is only intended to be a rough approximation for this equilibrium near
marginal stability point [23].) The finite pressure leads to a reduction of the growth r
apparently due to the fact that beta is greater than one at a large radius, as dest
above. The finite-beta case is a more realistic representation of the solar corona ths
force-free case (witl8 = 0), in which the flux tube kinking in the weak-field region is no
impeded.

Figures 8 and 9 show that the kinked flux tube appears to settle to a new equ
rium state. This state does not appear to have any current sheets; the magnetic fie
mains smooth and free of discontinuities. In Fig. 10 we show the evolution of the t

0 100 200 300 400 500
Time

FIG. 8. Magnetic energy in various Fourier modes as a function of time for the nonlinear kink. The energ
normalized by the factoE, = B2a®/(8r).
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10—12 /

FIG. 9. Kinetic energy in various Fourier modes as a function of time for the nonlinear kink. The energy i
normalized by the factoE, = B2a®/(8r).

magnetic, kinetic, and thermal energies (definet\by: [[B2?/87]dV, K = [ 1pv2dV,

andE= [[p/(y — D]dV, respectively). Note that as the flux tube kinks, the magnetic

energy is converted into kinetic energy and, finally, into thermal energy. The kinked flL

tube approaches an equilibrium that has smaller magnetic energy than the initial state.
The large-scale kinking of the flux tube is best illustrated by traces of the magnetic fie

lines. In Fig. 11 we show traces at four instants of timet At100ca, during the linear

stage, the kink is barely perceptible in the field line plott At250c, the kinking pattern

is clearly visible. The traces &t= 400, andt = 500z5 show that the kink is saturating to

a new equilibrium state.
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FIG. 10. The total magnetic, kinetic, and thermal energies (indicated respectivelyWitk, and E) as
functions of time for the nonlinear kink. The energy in normalized by the fdtes B2a®/(8r).
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FIG. 11. Field line plots at = 100z,, t = 250r,, t = 400r,, andt =500z, . Field lines start from the bottom
of the loop from a circle of radiua. Initially the kink pattern is barely visible, but when the instability saturate
to a new equilibrium (third and fourth panel), the center of the loop has moved outward ta abdat

5. CONCLUSIONS

We have presented a fast and accurate algorithm for the solution of the full resistive
viscous MHD equations in cylindrical coordinates in the presence of line-tied bound
conditions. The computer code based on this algorithm has been applied to the stu
solar coronal flux tubes. In particular, the techniques are suited to the simulation of
tubes whose footpoints are driven by slow photospheric motions.

The algorithm is implemented using finite differences in two dimensions, with ps
dospectral derivatives along the third (periodic) dimension. The use of staggered fil
difference meshes preserves the solenoidal nature of the magnetic field and leads toar
specification of boundary conditions on the tangential electric field and the normal magr
field. Time advancement of the wave-like terms is performed with a leapfrog scheme
semi-implicit operator is used in the momentum equation to give unconditional stabi
to wave-like terms. Advective terms are advanced using a predictor—corrector scheme
therefore limit the time step by a Courant condition based on the flow speed. This all
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us to use significantly larger time steps than those achievable by a fully explicit algorithr
The viscous and resistive terms are discretized using a fully implicit time advance. T
semi-implicit, viscous, and resistive operators are inverted using a preconditioned con
gate gradient method. Special care has been taken to maintain the self-adjointness of
discretized operators, so that a fast inversion algorithm applicable to symmetric matric
can be used.

To illustrate the application of the code, we have presented the nonlinear evolution
the ideal kink instability in the Gold—Hoyle uniform-twist field. Our results show that it
is possible to follow the linear and nonlinear evolution of the kink instability. In the cas
of the Gold—Hoyle equilibrium, it appears that the kink instability saturates nonlinearly &
the flux tube evolves to a new kinked equilibrium without the formation of current sheet
This result is in agreement with the results of Baty and Heyvaerts [25]. In contrast, Cra
and Sneyd [24] concluded that the kink instability in the Gold—Hoyle field causes curre
sheets to form, a conclusion that is based on a calculation on a Lagrangian mesh wh
accuracy is impaired when the mesh becomes significantly distorted by the finite-amplitu
kink displacement. The evolution observed here for the Gold—Hoyle equilibrium contras
sharply with the nonlinear evolution of the kink mode in a tokamak in which the nonlines
evolution causes current sheets (i.e., true discontinuities in the magnetic field) to form [2
a difference that has been attributed to the effect of line tying in the case of the coalesce
instability by Longcope and Strauss [28]. In our case, it was thus possible to study the id
MHD evolution. In general, instabilities can introduce current sheets, in which case it
necessary to study the resistive evolution. Equilibria in which the kink instability create
current sheets are discussed in [26, 29]. The role of a resonant surface in the formatior
current sheets as a result of the nonlinear evolution of kink instabilities has been addres
previously [9, 25].

Therefore, the kink instability in the Gold—Hoyle equilibrium is not likely to play an
important role in the solar corona, since it does not appear to cause significant heating o
lead to impulsive motions. On the other hand, other equilibria, in particular those in whic
the nonlinear evolution causes current sheets to form, leading to significant plasma heat
magnetic reconnection, and patrticle acceleration, are likely to be of interestin understand
coronal phenomena. Numerical algorithms and codes such are the one detailed here wil
an important tool in this endeavor.

The code has also been used elsewhere [29, 26] to study the nonlinear evolution
instabilities in more realistic equilibria that are intended to model coronal loops formed &
the twisting of uniform ambient fields and from the emergence of magnetic flux tubes fro
the photosphere. In these cases we have modeled the formation of current sheets, mag
reconnection, and fast energy release.

APPENDIX A: FOURIER COEFFICIENTS IN POLAR COORDINATES

Let us consider a scalar functiéiix, y). We assume it is regular near the origin and we
expand it in Taylor series

N x2 9°F
0 2 x?

Fx,y)=F +xaF
»Y) =Fo ax

oF

282F
+y— Y
0

+__
o 2 9y?

9°F
+ Xy

... (62
0 ox ay + (62)

0
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Sincex = r cosf andy = r sind, We can rewrite Eq. (62) as

1( oF oF i 1( oF oF i
Fx,y)=Fo+r|=| — i—| €7+ — i—| |e"?
x.y) ot 2<3Xo ay 0) +2<8x 0+ ay O)
1( 9°F . 9%F 9°F i 1 9%F 9°F
+r2 - e —9 - el2(9 4+ = e -
8\ ax?|, axay |o ay? |y 4\ ax2 |,  dy?|,
1( 0%F 9%F 9%F :
+-| —| +2 —— e +.... (63)
8( X2 | Xy |o  AY? |

Hence the " term is a certain combination of exponential functiéff¥, with —n < m < n.
Sinceé™ may appear only when > |m| when we calculate the Fourier seriesfafwe
obtain

FPr = cmrn, (64)

n=|m|

Thus we haveE ™ (r) = O ™) for smallr.

Letus consider now only one term ofthe Fourier sef@(x, y) = ™ (r)é™ . Notwith-
standing is always defined to be greater than zero, we notice that in an algebraic poir
view we are allowed to write

r— —r, (65)

0 — 0+m. (66)
In this casex andy do not change and so
F™em (ry = F™(—r)é™ (-1™. (67)

Let us expand both members of Eq. (67) in Taylor series arouad, obtaining

> o™ - (-p™™ =o0. (68)

n=(m|

This imposes the following condition on the Taylor series terms ofritieFourier coeffi-
cient of F(x, y),

Cr(1,n)=0{n+m=2k+1

k=0,12,.... (69)

This means that the Taylor series of an even coefficient has only even terms and, vice \
if mis odd only odd terms are found.

Let us examine now a vecttf = (Uy, Uy), where the vector component(x, y) and
Uy (x, y) are scalar functions with the same properties ¢f, y). The components df in
polar coordinates are

Ur = Uy cosh + Uy sing, (70)
Uy = —Uyxsind + Uy coss. (71)



198 LIONELLO, MIKI €, AND SCHNACK

From this follows that the Fourier series coefficients are
G =3 (00 + G -G +i0y™), (72)

G =3 (0 -G+ Gy 4 O (73)

ThusU™ and(J ™ areQ(rmn(m-1.m+1)) \Whenm is even only odd terms of the Taylor
series are found and vice versa. Note that fer 0 andm > 1 the following equality holds:

0™ =—igy". (74)
In cylindrical coordinates the third componést behaves as a scalar function.
APPENDIX B: STABILITY OF PREDICTOR-CORRECTOR
ADVECTION ALGORITHMS

The typical advection equation in one dimension is

of  af

%o 75
ot T Vax (75)

To solve the equation above we employ the predictor—corrector algorithm

fj*A_t 0 = —vDf",
f.n+l_ fn
! X L — —quDf*— (1—a)vDf", (76)

where 0< « < 1. For centered differences

fiya— fi_
Df = 1= 77
A (77)
while for upwind differences

fi— i ifv>0
Df = AX (78)

fipa— 1) if v <0

AX ’

The scheme above is first-order accurate in time. In order to perform a Von Neuma
stability analysis we suppose that alocal solution behaves lika x, t,) = 2" exp(ikj Ax)

and we assume for simplicity that> 0. The amplification factoz(k) must have modulus
less than 1 for stability (see [30] for a more complete discussion of the method). Substituti
f into Eq. (76) we obtain

vAt vAt

0= i sin(kAX) centered differences
" | 1—cogkAXx) +i sin(kAx) upwind differences
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The case of centered differences and no predictor—correctej yields|z| always greater
than one and is unconditionally unstable. If we introduce upwind differences then we t
|z| < 1when

— <1, 80
UAXE ( )

the so-called Courant condition. With the predictor—corrector and centered difference
obtain

2
2 (5%%) (81

o AX

for stability. For a fully advanced correctax £ 1) we find again the Courant condition.
Using these methods introduces a humerical viscosity term
32 f
Vn m (82)
into Eq. (75), whichis useful to damp small unresolved scales. Let usauvtexp(—i wr At
+ y At) and thenfing’ from Eq. (79), limiting ourselves to the cdsax « 1. From Eq. (82)
it follows that the numerical viscosity coefficientis = —y /k?. With upwind differences

anda = O its value is
VAX vAt
~—(1-—, 83
Y 2 ( AX ) (83)

and fora = 1 and centered differences

_ v2At

v~ > (84)

The situation in the code is complicated, with respect to this simple example, by the pres
of nonuniform three-dimensional meshes in a non-Cartesian frame of reference. Fur
more, the conditions above are onlycessargand not sufficient for stability. Fully advanced
predictor—corrector is used to stabilize advection in the periodic diregtigince we cannot
upwind#-derivative. We normally combine this method with upwind differencesamd

z, originating the stability condition showed in Eq. (19) since both must obey the Cour
condition.

APPENDIX C: POSITIVE DEFINITENESS OF A
SYMMETRIC TRIDIAGONAL MATRIX

Let us consider a symmetric tridiagonal matfof the form:

C2 + b1 + by + Coba, i =2,
A=< GC+b_1+Db, 3<i<N-2
Cn-1+bn2+ by +Clbnog, T=N-=-1, (85)

Aiyi=b 2<i<N-=-2
Aii=b_1 3<i<N-1,
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wherec; andb; are positive andy andC. may be either 1 or-1. A matrix A is positive
definite if and only if

X-A-x>0 Vx#0. (86)

The condition above becomes for our matrix

N-1 N—1
Z x2(Ci + by +bi_1) + Z Xi Xi—10_1 (87)
i=2 i=3
N-2
+ Z X Xi b + X%blco + Xﬁ_le_]_CL > 0. (88)
i=2

We can rewrite it as
N-1 N-2
Z x2Gi + Z bi (i — Xi11)% + x2by (1 + Co) + X4 _;bn_1(1+CL) > 0, (89)
i=2 =2

that is manifestly true.
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